Inversion of Ground Gravity and Airborne Gradient Data

Ruizhong Jia, Ross Groom, PetRos EiKon Inc Bob Lo, BHL Earth Sciences Society of Exploration Geophysicists, Houston, 2005

TOPICS

- Interaction between Euler Deconvolution Technique and 3D inversion
- Equivalence source technique vs FFT - e.g. derivatives, continuation
- Conclusion

PetrosEikon

Euler Deconvolution Technique-Review

Euler's Equation:

$$\begin{aligned} x_0 \frac{\partial G(x_i, y_i, z_i)}{\partial x} + y_0 \frac{\partial G(x_i, y_i, z_i)}{\partial y} + z_0 \frac{\partial G(x_i, y_i, z_i)}{\partial z} + NG_0 = \\ = NG(x_i, y_i, z_i) + x_i \frac{\partial G(x_i, y_i, z_i)}{\partial x} + y_i \frac{\partial G(x_i, y_i, z_i)}{\partial y} + z_i \frac{\partial G(x_i, y_i, z_i)}{\partial z} \end{aligned}$$

 $G(x_i, y_i, z_i)$ -measured data at locations, i = 1, 2, ..., M

- G_0 constant background field
- N- structural index (fall-off_rate of the field G)

 (x_0, y_0, z_0) - anomalous source

Gravity Structural Indices 0 - sill/dyke/step 0.5 - ribbon 1 - pipe 2 - sphere

Euler Deconvolution – solutions and post-processing

3D-Euler deconvolution technique (Reid et al. (1990), Zhang et al, 2000)

Post-processing technique (Mikehailov et al. 2003)

Forward Modeling-gravity and gradients

Quasi-Analytic Solution:

•Polyhedron of triangular facets

•Integrals by M. Okabe (1979).

$$G_{z}(\vec{r}_{0}) == \gamma \iiint_{V} \rho(\vec{r}) \frac{z - z_{0}}{|\vec{r} - \vec{r}_{0}|^{3}} dv$$

$$G_{zx}(\vec{r}_0) == 3\gamma \iiint_{V} \rho(\vec{r}) \frac{(x - x_0)(z - z_0)}{|\vec{r} - \vec{r}_0|^5} dv$$

$$G_{zx}(\vec{r}) = 2\gamma \iiint_{V} \rho(\vec{r}) \frac{(y - y_0)(z - z_0)}{|\vec{r} - \vec{r}_0|^5} dv$$

$$G_{zv}(\vec{r}_0) == 3\gamma \iiint_{v} \rho(\vec{r}) \frac{(y-y_0)(z-z_0)}{|\vec{r}-\vec{r}_0|^5} dv$$

$$G_{zz}(\vec{r}_0) = \gamma \iiint_{\mathcal{V}} \rho(\vec{r}) \left[\frac{3(z-z_0)^2}{|\vec{r}-\vec{r}_0|^5} - \frac{1}{|\vec{r}-\vec{r}_0|^3} \right] d\nu$$

 $\vec{r}_0 = (x_0, y_0, z_0)$ - observation location

 $\vec{r} = (x, y, z)$ - source location

 $V\operatorname{-volume}$ of the anomalous mass

 γ - the gravitational constant

•30 lines of length 2800m along the NS direction.
•Inline sampling 40m. The distance across lines is 100m.
•The station elevation is 1 m from ground surface.

BHL

Salt Dome Model

Based on Peters and Dugan (1945)

BHL

Computed Model - gradients of vertical gravity Gz

BHL

Computed Model - gradients of vertical gravity Gz

BHL

Euler Deconvolution- setting and data types

• Euler Deconvolution Setting:

- Moving window size: 750 m by 750 m
- Structural index range: 0.25 2.25

(excluding 0 as there is no true anomaly with this rate)

- 3 types of data:
 - Quasi-analytic Gz with quasi-analytic gradients

interpolated on grid with cell size 20m by 50m (1/2 data)

Quasi-analytic Gz and FFT gradients

FFT grid cell size 21m by 46 m

Quasi-analytic Gz with noise and FFT gradients

FFT grid cell size 21m by 46 m

Gaussian noise with S.D. = 0.05mgal (.1% of peak)

Euler Deconvolution - Synthetic VS. FFT Gradients

Across-line gradient along a NS profile at east –27m.

Seg2005_125.dat, Seg2005_124.dat, Seg2005_126.dat

Euler Deconvolution - Synthetic VS. FFT Gradients

tighter inline grid due to higher inline sampling Seg2005_125.dat, Seg2005_124.dat,

Seg2005_126.dat

12

BHL

Seg2005_125.dat, Seg2005_124.dat,

incorporates errors of crossline

Seg2005_126.dat

13 BHL

Euler Solutions-comparison

Note: after post-processing

Colors indicate the deviation of solution

Red: low, Yellow: medium, Blue: high

Seg2005_90.dat, Seg2005_88.dat, Seg2005_93.dat

How to generate gradients effectively?

As seen, it is essential to have accurate gradients in order to generate good Euler solutions.

The problem is that FFT gradients are not reliable in the case that the line spacing is "large".

Next we will demonstrate that accurate gradients can be generated utilizing 3D-inversion (reference???).

3D-Gravity Inversion-theory

Inversion Model

Minimization Technique:

Conjugate Gradient

size ?, depth ?

Minimize $\left|\phi - \phi^*\right|$ Subject to $l_i \leq \rho_i \leq u_i, i = 1, 2, \dots, N$ $\phi = \left\| W_d \left(d - \hat{d} \right) \right\|^2$ $d = d(\rho_1, \rho_2, \cdots, \rho_N)$ ϕ^* prescribed tolerance $(\hat{d}_1, \hat{d}_2, \cdots \hat{d}_M)$ measured data $(d_1, d_2, \cdots d_M)$ simulated data $W_d = diag(1/\sigma_1, 1/\sigma_2, \cdots, 1/\sigma_M)$ σ_i is the standard deviation of the *i*-th datum

3D-Gravity Inversion-synthetic data

- •Apply inversion to Gz of salt dome
- •Add random noise to Gz
 - σ = 0.05 mGal
- Initial 3D-grid volume
- dimensions = 3200 m x 3000 m x 2000 m (lx,ly,lz)
- •The distance from top of the 3D-volume to measurement points
- 50 m.
- Grid cell

width 100m in easting, 50m in northing, and vertical extent 100m

-Utilize the data deviation during the inversion - $\chi 2$

BHL

Gz inversion misfit ie. relatively random.

Seg2005_102.dat

Seg2005_115.dat

Euler Deconvolution-utilization of inversion results

EQUIVALENT SOURCE TECHNIQUE

Generate Gz and its gradients from inverted model

- Apply Euler Deconvolution to these data
 - > Moving window size: 750 m by 750 m
 - **Structural index range: 0.25 2.25**

Objective: Generate more accurate Euler solutions as starting model for inversion.

Comparison of Gradients- along NS profile at easting –27m.

Red – Computed Solution.

Seg2005_125.dat, Seg2005_127.dat, Seg2005_126.dat Blue - Equivalence Source - i.e. computed from inversion model using Gz (noise)

Green – FFT using Gz (noise).

Euler Solutions-comparison

from computed gradients by analytic solution

by Equivalent source using data with noise

Conclusion:

Euler solutions can be improved

with the use of inverted gradients

Seg2005_93.dat, Seg2005_111.dat, Seg2005_90.dat

3D-Gravity Inversion- Utilization of Euler solution information

BHL

3D-Gravity Data Inversion-misfit

Gz inversion misfit.

The top of 3D- grid volume is 300 m from ground surface.

Seg2005_107.dat

Seg2005_115.dat

Upward continuation –utilization of 3D-Inversion

<u>Purpose:</u> to demonstrate that equivalent source technique can be used for upward continuation

- 1. Compute the responses of the dome at 80m above the ground using
- 2. perform upward continuation by standard FFT
- 3. perform upward continuation by Equivalent source technique
- 4. Compare with analytic solutions

Along NS profile at x=1500m Flight height: 80m

Upperward continuation –utilization of 3D-Inversion

Along NS profile at x=27m. Flight height: 80m

Upward continuation –utilization of 3D-Inversion

Along NS profile at x=1500m

Flight height: 80m

Upperward continuation –utilization of 3D-Inversion

Along NS profile at x=27m. Flight height: 80m

Conclusions

Based on inverted models, various components of gravity/gradient data can be generated accurately by the equivalent source technique.

Gravity/gradient data generated with inverted models can greatly enhance the Euler Deconvolution technique.

Euler solutions can provide useful information for setting starting models of the inversion.

Utilization of data deviation gives better inversion results

The equivalent source technique can provide better results than standard FFT for derivatives and continuation (filtering?)

Petros Eikon

